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We study the effects of many-body dephasing processes on the electron conductance and current fluctuations
of quantum wires, with particular attention to Hall bars. The theoretical study is based on the nonequilibrium
Green’s function formalism and the self-consistent Born approximation for the dephasing self-energy opera-
tors. The numerical study of the retarded and lesser Green’s functions of the interacting system is carried out
by means of continued fractions and iterative techniques, within a tight-binding description of the electronic
device. The crossover from the noise regime to the noiseless regime with its striking universal features emerges
with great evidence from the calculated behavior of conductance and shot noise in the studied quantum wires.
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I. INTRODUCTION

Quantum transport in low-dimensional systems in the
presence of scattering mechanisms is the subject of intense
investigations, motivated by the desire of deeper comprehen-
sion and improved control of the carrier flow in mesoscopic
devices. Elastic and inelastic scattering processes are of
much interest to characterize transport phenomena in a vari-
ety of nanoscale systems, including molecular junctions and
molecular motors,1–4 graphite-like materials,5–8 organic and
inorganic nanostructures,9–12 spintronics and magnetoelec-
tronics devices,13,14 quantum Hall wires and magneto-
transport.15–19 In particular, in quantum Hall wires, conduc-
tance fluctuations and dephasing processes have been de-
scribed numerically and mimicked phenomenologically with
fictitious probes carrying zero net current and in contact with
fictitious reservoirs.15–17

The aim of this paper is to elaborate a theoretical and
numerical procedure for a unified description of noise and
noiseless regimes in quantum Hall wires, and a clear cross-
over from the dissipative to the dissipationless current flow.
This requires a rigorous formulation of the many-body prob-
lem from one side, and the possibility of solving the trans-
port equations with highest numerical accuracy from the
other side. This in order to account for both the sample de-
pendent features and the universal aspects of magnetotrans-
port on the same footing. In particular, it is well known that
the observed plateaus of the Hall resistance in the integer
Hall effect entail values of the von Klitzing constant20 repro-
ducible to better than eight significant digits independently
of the semiconductor used, shape and size of the sample,
disorder and imperfections, impurity or alloys fluctuations,
and other dephasing processes envisaged to occur in any ex-
perimental device.21 Then, to tackle the problem of magne-
totransport and dephasing in quantum wires, the formal and
numerical apparatus should be capable of such an accuracy.

For an ab initio study of elastic and inelastic processes in
mesoscopic systems, the main tool is represented by the non-
equilibrium Keldysh Green’s function formalism,22–25 which
encompasses the full many-body theory. In this formalism,
the presence of many-body interactions �such as electron-

electron, electron-phonon, ensemble averages of disorder
fluctuations, dephasing effects� can be described by an ap-
propriate fourfold set of self-energy operators �R,A,�,��scatt�

�retarded, advanced, lesser and greater�. Quantum transport
is then studied by solving the Keldysh kinetic equations for
the retarded and advanced propagators, and for the lesser and
greater correlation functions.

The self-energy operators of the actual scattering mecha-
nism can be calculated at various degrees of approximation,
depending on the scattering processes at work. The many-
body diagrammatic perturbation series is often handled
within the self-consistent Born approximation.25–29 This ap-
proach rigorously fulfills the key condition of current conser-
vation, and yet the whole apparatus remains manageable
enough for high accuracy numerical calculations of transport
properties. In fact, in the Born approximation, the self-
energy operators of the scattering processes are linear func-
tionals of the Green’s functions. By virtue of linearity, we
show how to elaborate the dephasing effects rigorously by
means of a mixing of continued fraction expansion29–31 and
linear homogeneous equations.

In Sec. II, we consider the tight-binding microscopic de-
scription of the electronic gas in the two-dimensional quan-
tum wire and the many-body model of dephasing within the
self-consistent Born approximation. In Sec. III, convenient
expressions of the full set of retarded, advanced, lesser and
greater Green’s functions and self-energy operators for scat-
tering are reported. In Secs. IV and V, the expressions of the
average current and the current fluctuations are provided for
quantum wires in the presence of dephasing effects. Al-
though the attention of our work is focused on quantum
wires, the presented formalism is quite general and transfer-
able to other two-dimensional systems. Section VI reports
the numerical simulations of transport in quantum wires,
both in the absence and in the presence of magnetic fields. It
is shown that in the absence of magnetic fields, the dephas-
ing entails shot noise and dissipative flow at any chosen
Fermi energy, even in ideally clean structures. On the con-
trary, in the presence of strong magnetic fields, noise and
noiseless regimes are observed in the same sample at differ-
ent energies. The crossover from the former to the latter re-
gime is signaled by the spectacular emergence of conduc-
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tance quantization and vanishing of shot noise. Section VII
contains the conclusions.

II. TIGHT-BINDING ELECTRON HAMILTONIAN AND
DEPHASING MODEL IN QUANTUM WIRES

For the theoretical treatment of the two-dimensional elec-
tron gas in quantum wires in the presence of phase-breaking
processes, we adopt a tight-binding electronic Hamiltonian
and describe dephasing effects within the self-consistent
Born approximation. The two-dimensional quantum wire un-
der attention is infinitely extended along the longitudinal di-
rection and has finite width in the transverse direction. The
tight-binding Hamiltonian is mapped on a square lattice
topology32–34 with a single orbital per site and nearest-
neighbor interactions only. The structure is conceptually split
into three parts: the left lead, the right lead, and the central
part coupled to them. We assume that some kind of dephas-
ing mechanism is active among the carriers of the two-
dimensional electron gas in the central part of the device,
while the leads are free from scattering. According to the
nonequilibrium Keldysh theory, the many-body interactions
can be described by appropriate self-energy operators of the
type �R,A,�,��scatt�, whose matrix elements are nonvanishing
only within the sites of the central device, regardless of the
nature and the origin of the scattering processes at work. As
usual, the effects of open leads on the orbitals of the central
device are described by the corresponding self-energy opera-
tors �R,A,�,��leads�. A scheme of the device is shown in Fig. 1.

We specify some notations of frequent use in the follow-
ing. In general the matrix element of a Green’s function op-
erator �say the retarded operator GR� carries four lower labels
Gmn,m�n�

R �E�: This is required to specify the propagator from
site m�n� to the site mn. The abridged notation with only two
labels, for instance Gmm�

R �E�, is used to denote the propagator
from a site �not yet specified� of column m� to a site �not yet
specified� of column m. The rank of such a matrix is thus N,
and corresponds to the transverse degrees of freedom. In the
study of the Keldysh kinetic equations, the interest is often
confined to the MN degrees of freedom of the central device.
In these cases, we indicate the sites with a single label. As an
example, we adopt the notation Gij

R�E� �i , j�central
device� to denote the matrix element of the retarded Green’s
functions between the sites i and j of the central device. The

notation adopted each time is apparent from the context.
Let us consider the description of dephasing processes in

the central device. Within the Keldysh formalism, elastic or
inelastic scattering mechanisms can be accounted for by self-
energy operators obtained by diagrammatic techniques. We
adopt the self-consistent Born approximation to picture
many-body interactions. This approximation has several ad-
vantages: �i� it entails a partial summation of the infinite
terms of the diagrammatic perturbative series, �ii� it rigor-
ously fulfills the key condition of current conservation in
stationary regime, �iii� it expresses the self-energy operators
as linear functionals of the Green’s function itself, and �iv�
thanks to linearity, it is particularly suitable for the applica-
tion of the highly effective iterative procedures.

The above considerations can be put on a rigorous quan-
titative basis by elaborating the general ab initio formulation
of the electron transport in mesoscopic devices in the pres-
ence of vibrational effects and other many-body interactions,
along the lines of Ref. 25. Many-body interactions, in agree-
ment with the Keldysh nonequilibrium formalism, are ex-
pressed �at least in principle� by advanced, retarded, lesser
and greater self-energy operators. Within the self-consistent
Born approximation, the self-energy operators for dephasing
are related to the electron Green’s functions by an appealing
linear form. Furthermore, for dephasing models that are local
in energy and space,25–29 the functional relation between
scattering operators and electron propagators takes the diag-
onal form

�ij
R,A,�,��scatt��E� = �ii

2�ijGij
R,A,�,��E� �i, j = 1,2, . . . ,MN� ,

�1�

where i , j denote sites of the central device, and �ii are posi-
tive parameters with the dimension of energy, which express
the effective coupling between the fluctuating field and the
fermion field. For the sake of simplicity, these parameters are
taken as independent of the site, i.e., �ii=� �the case of site
dependent �ii can be treated similarly�. The local dephasing
model �1� describes simultaneous phase and momentum re-
laxation. It has been widely exploited in the literature23–29 for
the study, e.g., of alloy disorder effects, interface roughness,
impurities ensemble averages, phonon dephasing and others.
Equation �1� can be written in the compact form

FIG. 1. �Color online� Schematic setup of a quantum wire for the analysis of electron transport. The central region, where phase-breaking
effects are active, extends from column 1 to column M �M �1� and embodies a total of MN sites. Scattering operators �R,A,�,��scatt� are
confined to the central device. The effect of the left and right open leads on the central region is expressed by �R,A,�,��left� and �R,A,�,��right�,
confined to column 1 and column M, respectively.
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�R,A,�,��scatt��E� = �2DsupG
R,A,�,��E�

�sites � central device� , �2�

where Dsup is a “superoperator” that preserves the diagonal
elements of the given matrix on which it acts, while setting
to zero all the off-diagonal elements. Within the stated for-
malism, we can now investigate the phase-breaking effects
on conductance and shot noise in quantum wires, in the ab-
sence or in the presence of external magnetic fields.

III. GREEN’S FUNCTIONS AND SELF-ENERGY
OPERATORS FOR DEPHASING DISORDER

In this section, we propose a formal elaboration �suitable
for computational implementation� of the electronic Green’s
functions and scattering operators in the central structure,
since they are the main ingredients for investigating the
transport properties of the system. To this aim, we proceed in
two stages: �i� the calculation of the retarded �and advanced�
propagators by means of a convenient continued fraction ex-
pansion of the propagators, and �ii� the solution of the kinetic
equations that control the lesser and greater Green’s func-
tions, by means of linear nonhomogeneous equations.
Throughout the whole section, it is understood that any ma-
trix has rank equal to the number of degrees of freedom of
the central region �even when the rank is not explicitly speci-
fied�.

Let us consider the equations for the retarded Green’s
function in the presence of dephasing on the M columns of
the device central region. Within the self-consistent Born ap-
proximation, the retarded Green’s function in the central de-
vice becomes

GR�E� =
1

E − H�C� − �R�leads��E� − �R�scatt��E�

�sites � central device� , �3a�

where H�C� is the electronic Hamiltonian of the central de-
vice, �R�leads� is the retarded self-energy due to the left and
right open leads, and

�R�scatt��E� = �2DsupG
R�E� �sites � central device�

�3b�

is the retarded self-energy within the adopted Born approxi-
mation. The solution of the above coupled equations is given
by the continued fraction

GR�E� =
1

E − H�C� − �R�leads� − �2Dsup
1

E−H�C�−�R�leads�−�2Dsup
1

E−. . .

.

�4�

By calculating the above expression, we obtain the retarded
Green’s function on the central device, and hence the scat-
tering retarded self-energies according to Eq. �3b�. As re-
ported in the literature,23,29 the matrix continued fractions of
type �4� are found to be well satisfactory for convergence
purposes. This in analogy to the well-established fact that
scalar continued fractions are generally characterized by a

very fast convergence to the fixed point value.30,31 In sum-
mary, the very accurate calculation of the retarded Green’s
function �4� owes much to the fast convergence of the con-
tinued fraction expansion, and to the well-established
renormalization-decimation techniques31–34 for the calcula-
tions of the matrices entering therein.

Once the retarded �and advanced� Green’s functions of the
central region are available, the expression of the lesser �or
greater� Green’s function can be obtained by the standard
kinetic equation

G� = GR���leads�GA + GR���scatt�GA

�sites � central device� , �5�

together with Eq. �2�. The result is

���scatt��E� = �2Dsup�GR���leads�GA + GR���scatt�GA� .

�6�

We notice that

���leads��E� = i fL��left��E� + i fR��right��E� , �7�

where

��left� = i�R�left� − i�A�left�, ��right� = i�R�right� − i�A�right�

�8�

are the linewidth operators, which couple the central device
to the left and right leads, respectively; fL�E� and fR�E� are
the Fermi-Dirac distribution functions of the left and right
reservoirs. From Eqs. �6� and �7� one obtains

���scatt��E� = i fLK�left��E� + i fRK�right��E� , �9�

where

K�left��E� = �2Dsup�GR��left�GA + GRK�left�GA� , �10a�

K�right��E� = �2Dsup�GR��right�GA + GRK�right�GA� .

�10b�

Similar to �R,A,�,��scatt�, also K�left� and K�right� are diagonal
matrices, defined exclusively on the sites of the central de-
vice. The K matrices have a clear physical meaning: They
represent the effective coupling of the central device to the
left and right reservoirs, mediated by the scattering events.

We can solve Eq. �9� explicitly by exploiting their linear
structure. Let us define a matrix P and a matrix Q �both of
rank equal to the number of degrees of freedom of the central
device� as follows:

Pj� = Gj�
R G�j

A � 	Gj�
R 	2; Q =

1

1 − �2P
.

The elements of the P matrix, between any two sites of the
central region, are defined as the product of the retarded and
advanced propagators back and forth between the chosen
sites. The matrix Q is the inverse of 1−�2P. Equations �10a�
and �10b� can be recast in the form

Kjj
�left��E� = �2�GR��left�GA� j j + �2�

�

Pj�K�j
�left�,

then the expression for the K�left/right� matrix elements reads
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Kjj
�left� = �2�

�

Qj��GR��left�GA���,

Kjj
�right� = �2�

�

Qj��GR��right�GA���. �11�

This is the exact and reasonably simple expression of the K
matrices, which play a role formally similar to the leads
��left/right� matrices, as evident from comparison of Eq. �7�
and Eq. �9�.

Before closing this section, it is worthwhile to establish a
key identity that strongly simplifies the calculation of shot
noise in devices with many-body effects on the central re-
gion. Within the central device and in the presence of scat-
tering events, it holds

GR − GA = �− i��GR��left�GA + GR��right�GA + GR��scatt�GA� ,

�12�

with

��scatt� = i�R�scatt� − i�A�scatt�.

By multiplying Eq. �12� by �+i��2, applying the superopera-
tor Dsup, to both members, and using the basic properties of
the self-consistent Born approximation, we obtain

��scatt� = �2Dsup�GR��left�GA + GR��right�GA + GR��scatt�GA� .

�13�

We solve this equation by means of the Q-matrix technique
adopted for Eqs. �10a� and �10b�, and obtain the identity

K�left� + K�right� � ��scatt�. �14�

We now have all the ingredients for the calculation of the
average current and current fluctuations in mesoscopic de-
vices in the presence of dephasing effects.

IV. CURRENTS IN QUANTUM WIRES IN THE
PRESENCE OF DEPHASING EFFECTS

With the results of Sec. III we can discuss dephasing ef-
fects on the electronic conductance of two-dimensional me-
soscopic systems. The attention of the present paper is fo-
cused on quantum wires represented on a square-lattice
topology with nearest-neighbor interactions. However, the
underlying formalism is general and ready �with minor
modifications� to handle other mesoscopic systems described
by a variety of tight-binding model Hamiltonians, including
composite lattice topologies and spin degrees of freedom.

Consider the quantum wire schematically represented in
Fig. 1. According to the nonequilibrium Green’s function
formalism, the average current through the device is given
by the expression

I =
− 2e

	

 dE

2

Tr��11

��left�G11
� − �11

��left�G11
� �

�i, j = 1,2, . . . ,N� , �15�

where the factor 2 takes into account the spin degeneracy.
The matrices in Eq. �15� are understood as the block part

corresponding to the Hilbert space of column 1, and have
thus rank N. What is remarkable of Eq. �15� is its general
validity, regardless of the presence or not of many-body ef-
fects in the central region, as can be established by revisiting
the procedures for its elaboration.

The expressions for the lesser �and greater� self-energies
of the left lead on the sites of column 1 are

�11
��left� = ifL�11

�left�; �11
��left� = − i�1 − fL��11

�left�. �16a�

Once specified for the quantities entering Eq. �15�, Eqs. �5�,
�7�, and �9� for the lesser �and greater� Green’s functions
give

G11
� = + ifLG11

R �11
�left�G11

A + ifL�GRK�left�GA�11

+ ifRG1N
R �NN

�right�GN1
A + ifR�GRK�right�GA�11, �16b�

G11
� = − i�1 − fL�G11

R �11
�left�G11

A − i�1 − fL�GRK�left�G11
A

− i�1 − fR�G1N
R �NN

�right�GN1
A − i�1 − fR��GRK�right�GA�11.

�16c�

By inserting Eqs. �16a�–�16c� into expression �15�, the aver-
age current through the device takes the form

Itot = Icoh + Iinc, �17a�

Icoh =
− 2e

	

 dE

2

�fL − fR�Tr��11

�left�G1N
R �NN

�right�GN1
A � ,

�17b�

Iinc =
− 2e

	

 dE

2

�fL − fR�Tr��11

�left��GRK�right�GA�11� .

�17c�

From the above equations, we obtain the coherent, incoher-
ent, and total transmission matrices

Tcoh�E� = �11
�left�G1N

R �NN
�right�GN1

A , �18a�

Tinc�E� = �11
�left��GRK�right�GA�11, �18b�

Ttot�E� = Tcoh�E� + Tinc�E� . �18c�

The differential conductance and its coherent and incoherent
components are given by the expression

�tot,coh,inc�E� =
2e2

h
Tr�Ttot,coh,inc�E�� . �19�

From the above results, it is seen that the total current and
total conductance through the device can be split into a co-
herent and an incoherent contribution. The former corre-
sponds to carriers crossing the sample with no assistance of
scattering events; the latter corresponds to carriers crossing
the sample subjected to one or more scattering processes.

This splitting of the current into two components, its the-
oretical foundation and importance for interpretative pur-
poses need a few comments. First of all, it is well known that
the self-consistent Born approximation of many-body inter-
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actions automatically satisfies the key requirement of total
current conservation �i.e., conservation of Itot= Icoh+ Iinc�. To
be specific, this means that the total current injected or ex-
tracted from the left lead to the central device �given by Eq.
�15�� equals the total current extracted or injected from the
right lead to the central device �given by a corresponding
equation�. For the sake of completeness, after lengthy deri-
vations, we have verified that both coherent and incoherent
components are separately conserved, in spite of the asym-
metry of the incoherent contribution with respect to the left
and right indexes.

We also wish to notice that, of course, any specific experi-
mental measurement of current concerns the total current,
and cannot discern between coherent and incoherent compo-
nents. However, the understanding of the behavior of total
current versus relevant parameters �i.e., length of the system,
strength of the many-body coupling, microscopic model of
interaction, crossover between different transport regimes,
etc.� cannot be pursued or predicted without the theoretical
splitting of the current into its incoherent and coherent com-
ponents.

V. CURRENT FLUCTUATIONS IN QUANTUM WIRES IN
THE PRESENCE OF DEPHASING EFFECTS

We consider now the calculation of the current fluctua-
tions. Within the Keldysh formalism, the quantum statistical
average of the current-current correlation function can be
performed by means of the Wick theorem applied in a region
free from scattering processes �in the leads, for instance be-
tween column 0 and column 1�. The spectral density of noise
in the zero-frequency limit is given by the Zhu-Balatsky
expression35

S01�0� =
2e2

	

 dE

2

Tr F�E� , �20a�

where

F�E� = − fL�1 − fL���11
�left�G11

R �11
�left�G11

R + �11
�left�G11

A �11
�left�G11

A �

+ ifL�11
�left�G11

� − i�1 − fL��11
�left�G11

� + �11
�left�G11

� �11
�left�G11

�

+ fL�11
�left��G11

R − G11
A ��11

�left�G11
� − �1 − fL�

�11
�left�G11

� �11
�left��G11

R − G11
A � . �20b�

The matrices in Eqs. �20a� and �20b� are restricted in the first
column subspace and have rank N. The above equation pro-
vides the general exact result for the noise power of the
current fluctuations in a two-terminal conductor: It includes
both shot and thermal noise. Remarkably, Eqs. �20a� and
�20b� are valid even in the presence of many-body interac-
tions in the central region.

The purpose of this section is to analyze and elaborate the
Zhu-Balatsky formula35 in order to describe the current noise
quantitatively. In fact, the pieces of information on the trans-
port regimes �for instance, dissipative or dissipationless re-
gime in quantum Hall wires� provided by the study of shot
noise and Fano factor are valuable and complementary to the
ones provided by the study of average current and conduc-
tance quantization.

In a two-terminal device, expressions �20a� and �20b� can
be decomposed in the general form

F�E� = fL�1 − fL�ALL + fL�1 − fR�ALR + fR�1 − fL�ARL

+ fR�1 − fR�ARR. �21�

In the case �L��R, and the temperature is zero, the shot
noise is determined by the term of the type fR�1− fL�ARL,
and can be calculated as follows. Using Eqs. �16a�–�16c� for
G11

�� , it is seen by inspection that the terms in Eqs. �20a� and
�20b� that give rise to the product fR�1− fL� are three,
namely,

ARL
�1� ⇒ − i�1 − fL��11

�left�G11
� ,

ARL
�2� ⇒ �11

�left�G11
� �11

�left�G11
� ,

ARL
�3� ⇒ − �1 − fL��11

�left�G11
� �11

�left��G11
R − G11

A � .

By using Eq. �12� and Eqs. �16a�–�16c� �and leaving implicit
the trace operation on the orbitals of the first column, for
notation simplicity�, the expressions of the three terms be-
come

ARL
�1� = �11

�left�G1N
R �NN

�right�GN1
A + �11

�left��GRK�right�GA�11

� Tcoh + Tinc � Ttot,

ARL
�2� = ��11

�left�G1N
R �NN

�right�GN1
A + �11

�left��GRK�right�GA�11�

��11
�left�G11

R �11
�left�G11

A + �11
�left��GRK�left�GA�11�

= Ttot  ��11
�left�G11

R �11
�left�G11

A + �11
�left��GRK�left�GA�11� ,

ARL
�3� = − �11

�left��G1N
R �NN

�right�GN1
A + �GRK�right�GA�11�

�11
�left��G11

R �11
�left�G11

A + G1N
R �NN

�right�GN1
A

+ �GR��scatt�GA�11�

= − Ttot��11
�left�G11

R �11
�left�G11

A + Tcoh

+ �11
�left��GR��scatt�GA�11� .

By summing up the three contributions we obtain the follow-
ing expression for the shot-noise coefficient:

ARL�E� = Ttot + Ttot�11
�left��GRK�left�GA�11

− TtotTcoh − Ttot�11
�left��GR��scatt�GA�11

= Ttot − TtotTcoh − Ttot�11
�left��GRK�right�GA�11

� Ttot − Ttot
2 , �22�

where we exploited identity �14�.
The basic formal structure of the shot noise, demonstrated

for the adopted dephasing model and summarized by Eq.
�22�, is suitable for both computational purpose and general
considerations. The main message of Eq. �22� is that the
noise for interacting electrons in the adopted model is sub-
Poissonian, since it has the same formal expression of a “fic-
titious” system of noninteracting electrons. For genuinely
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noninteracting electrons, the expression of the transmission
matrix only involves the standard coherent component. For
interacting electrons the transmission matrix of interest is
inclusive of both the coherent and incoherent terms. It is also
evident that the zero-temperature shot noise is always de-
creased by quantum effects in comparison with the Poisson
value �this is always true for noninteracting electron systems,
and remains true for interacting electrons in the elastic
dephasing limit considered in this paper�. A standard mea-
sure of the sub-Poissonian shot noise is the Fano factor de-
fined as

F �
Sshot

2e�I�
�

Sshot

Spoisson
=

Tr Ttot�1 − Ttot�
Tr Ttot

=

�
j

Tj�1 − Tj�

�
j

Tj

,

�23�

where Tj are the eigenvalues of the total transmission matrix
Ttot. From Eq. �23�, it can be inferred that the crossover from
noise to noiseless transport regime can be best signaled by
the emergence of perfectly transmitting eigenchannels in se-
lected energy intervals of interest.

VI. NUMERICAL RESULTS

With the formalism considered so far, we evaluate the
conductance and the Fano factor for quantum wires under
different conditions of dephasing, magnetic field and Fermi
energy. The comparison between the results in the absence
and in the presence of magnetic fields is particularly inter-
esting because it allows one to assert the robustness of the
conductance quantization in the integer quantum Hall regime
quantitatively, and to analyze the microscopic conditions that
favor the dissipationless regime.

The study of the crossover between the noise and the
noiseless regime is quite demanding, and requires not only
the sound formal apparatus discussed in the previous sec-
tions but also the highest numerical accuracy. This can be
achieved with the tools provided by the renormalization-
decimation or other recursive techniques,30–34 routinely de-
veloped in the formulation of the Keldysh nonequilibrium
Green’s function theory within the tight-binding framework.
In particular, we refer to a paper34 for technical details and
procedures. Here, we briefly summarize the essential aspects
of the dephasing model and choice of parameters for the
quantum wires.

The continuous electronic gas system of the quantum wire
is discretized on a square lattice of edge a, with a single
orbital per site of energy E0, and nearest-neighbor hopping
parameter t. The open electronic wire is infinitely extended
along the x direction and has width W= �N−1�a, where N is
the number of chains. In the presence of a magnetic field in
the positive z direction, described by the gauge vector poten-
tial A�r�= �−B y ,0 ,0�, the electron Hamiltonian of the clean
system takes the form

H = E0�
mn

cmn
† cmn + t�

mn
�cmn

† cmn+1 + cmn+1
† cmn�

+ t�
mn

�e−i2
�ncmn
† cm+1n + e+i2
�ncm+1n

† cmn� , �24�

where cmn
† ,cmn are creation and annihilation operators for

electrons in the orbital at the site �ma ,na�. The Peierls phase
is given by �=�p�B� /�0 where �p�B�=Ba2 is the magnetic
flux through the elementary plaquette and �0=hc /e is the
flux quantum. For an ideal defect free wire, all the diagonal
matrix elements are set equal to E0=−4t.

Let us consider a model 200 nm wide quantum wire, and
discretize it on a square grid with N=150 chains, i.e., a
�1.342 nm. The electron effective mass is taken m�

=0.067me �typical of the GaAs-AlGaAs heterostructure�,
and the nearest-neighbor hopping parameter is thus t
�−424 meV. The quantum wire is considered both in the
absence and in the presence of perpendicular magnetic fields.
In the case of a magnetic field B=10 T, the Peierls phase
factor is ��4.3510−3, the magnetic length is l0�8.1 nm,
and the magnetic energy is 	�c�17.3 meV. We consider
four values for the coupling parameters, namely �
=0,100,200,400 meV. The range of the nonvanishing val-
ues of � has been chosen so that the mobility of electron
carriers, estimated from the change of resistance of the two-
terminal device in the presence and in the absence of scat-
tering, is in the typical range 104−105 cm2 V−1 s−1 of the
samples used in transport and magnetotransport measure-
ments. As central disorder region we take a single column of
sites in Figs. 2 and 3, two columns in Figs. 4 and 5, and five
columns in Figs. 6 and 7. These models, corresponding to
M =1,2 ,5 in Fig. 1, provide the exact quantitative descrip-
tion and intuitive understanding of the interplay of magne-
totransport and dephasing effects, at a reasonable computa-
tional level. For the treatment of many-body effects active in
longer multicolumn central devices, the numerical burden is
correspondingly increased. For large size central regions, an
avenue that could be addressed is to combine discussed con-
cepts and procedures for phase randomizing processes with
the lowest-order current-conserving expansion of the self-
consistent Born approximation, so successful in the field of
transport and dissipation in molecular electronics.2,3

We begin to discuss the numerical results in the case
where the central disorder region is composed of a single
column of sites, and in the absence of magnetic fields. In Fig.
2, we report the total conductance, the coherent and incoher-
ent contributions, and the Fano factor as a function of energy
in the absence of magnetic fields at various values of the
coupling constant. The incoherent contribution increases in
correspondence of the steps between plateaus, and remains
small but still significant elsewhere. The total conductance
never quantizes exactly to integer values, since backscatter-
ing is not suppressed. The curves reporting the Fano factor
are even more revealing: The Fano factor is higher for ener-
gies near the thresholds of the steps, corresponding to the
activation of a new conductive channel, while it decreases by
1 or 2 orders of magnitude for intermediate energies.

Figure 3 reports the results for the same 200 nm wide
quantum wire threaded by a uniform magnetic field of 10 T.
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Similarly to the previous figure, the incoherent term is sig-
nificant especially at and near the edges of the steps, while
the coherent term prevails within the steps. This shows that
scattering events remain active both in the presence and in
the absence of magnetic fields. The quenching of scattering
processes is neither produced by the magnetic field nor re-
quired for dissipationless current flow: The novelty intro-
duced by the magnetic field in the quantum wire character-
ized by a width much larger than the magnetic length is the
backscattering suppression of both coherent and incoherent
components flowing in the edge conductive channels, at en-
ergies far from the bulk Landau levels. This entails, in these
energy intervals, perfect quantization of the conductance and
concomitant vanishing of shot noise, which decreases at least
by 7 orders of magnitude in the calculations reported in Fig.
3. The interplay between bulk states and edge states in the
quantum Hall regime21 emerges with great evidence from the
observed shot-noise suppression. At energies around the Lan-
dau levels, where bulk states and edge states coexist, the

incoherent contribution exhibits a sharp increase, the con-
ductance quantization is lost and shot noise accompanies the
dissipative current flow.

The peculiar universal features, observed in the case of
the minimal model of Fig. 3, remain robust spectacular fea-
tures also in the case of multicolumn central devices. Figures
4 and 5 refer to the case that the central disorder region
covers two columns, while Figs. 6 and 7 refer to the case that
dephasing is active on five columns of the wire. In the ab-
sence of magnetic fields �Figs. 2, 4, and 6�, with increasing
length of the central device, it is seen that the incoherent
contribution increases and tends to become comparable �or
even to prevail in some energy regions� with respect to the
coherent contribution. In the presence of magnetic fields
�Figs. 3, 5, and 7�, it is seen that the energy extension of the
dissipative and dissipationless regions is parameter depen-
dent. At the same time, the universal features of the dissipa-
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FIG. 2. �Color online� Total �a�, coherent �b� and incoherent �c�
differential conductance, and logarithmic value of the Fano factor
�d� for 200 nm wide wire in the absence of magnetic fields, for �
=0,100,200,400 meV. In �a� and �b� the curves with increasing
values of � are �in general� smaller; in �c� and �d� the opposite
occurs. The dephasing effects are active in a single column of the
device. The current flow, characterized by noninteger values of the
conductance and non-negligible noise, is dissipative at any energy.
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FIG. 3. �Color online� Total �a�, coherent �b� and incoherent �c�
differential conductance, and logarithmic value of the Fano factor
�d� for 200 nm wide wire in the presence of a 10 T magnetic field,
for �=0,100,200,400 meV. In �a� and �b� the curves with increas-
ing values of � are �in general� smaller; in �c� and �d� the opposite
occurs. The dephasing effects are active in a single column of the
device. Energy regions where the current flow is characterized by
integer values of the conductance and no noise alternate with en-
ergy regions characterized by shot noise and noninteger values of
the conductance.
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tionless regime �perfect integer quantization of conductance
and perfect quenching of the current fluctuations� emerge
with evidence, regardless of the length of the scattering re-
gion and of the strength of the many-body interactions.

VII. CONCLUSIONS

The many-body Keldysh formalism of quantum transport
provides a reliable description of the dephasing effects on the
electronic conductance and shot noise for quantum wires. In
elaborating the self-consistent Born approximation to the
many-body interactions, we have established some general
results that go beyond the specific two-dimensional meso-
scopic systems considered in this paper. In particular, we
have shown that the electron conductance is naturally split
into the sum of incoherent and coherent components, which
correspond to carriers crossing the system with or without
the assistance of scattering events. We have also demon-

strated that, in the local models of dephasing, shot noise is
always decreased in comparison with the Poisson value by
quantum effects. For interacting electrons, the noise is con-
trolled by the total transmission matrix, which is inclusive of
coherent and incoherent components.

The high-accuracy numerical study of average current and
current fluctuations is achieved by means of continued frac-
tion expansion of the retarded and advanced propagators, and
linear nonhomogeneous equations for the lesser and greater
Green’s functions. In the absence of magnetic fields and even
in clean quantum wires, the dephasing effects are responsible
for dissipative current flow, with nonquantized conductance
values and finite shot noise. In quantum Hall wires in strong
magnetic fields, we have observed both the dissipative re-
gime and the dissipationless regime, with its striking univer-
sal aspects, plateau robustness and noiseless current flow.
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FIG. 4. �Color online� Total �a�, coherent �b� and incoherent �c�
differential conductance, and logarithmic value of the Fano factor
�d� for 200 nm wide wire in the absence of magnetic fields, for �
=0,100,200,400 meV. In �a� and �b� the curves with increasing
values of � are �in general� smaller; in �c� and �d� the opposite
occurs. The dephasing effects are active in two columns of the
device. The current flow, characterized by noninteger values of the
conductance and noise, is dissipative at any energy.
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FIG. 5. �Color online� Total �a�, coherent �b� and incoherent �c�
differential conductance, and logarithmic value of the Fano factor
�d� for 200 nm wide wire in the presence of a 10 T magnetic field,
for �=0,100,200,400 meV. In �a� and �b� the curves with increas-
ing values of � are �in general� smaller; in �c� and �d� the opposite
occurs. The dephasing effects are active in two columns of the
device. Energy regions where the current flow is characterized by
integer values of the conductance and no noise alternate with en-
ergy regions characterized by shot noise and noninteger values of
the conductance.
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The present procedure for the investigation of dephasing ef-
fects, adaptable to other models of many-body interactions,
could find application in the study of transport in other two-
dimensional systems, including the rich phenomenology of
spin-Hall transport and carbon-based devices.
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FIG. 7. �Color online� Total �a�, coherent �b� and incoherent �c�
differential conductance, and logarithmic value of the Fano factor
�d� for 200 nm wide wire in the presence of a 10 T magnetic field,
for �=0,100,200,400 meV. In �a� and �b� the curves with increas-
ing values of � are �in general� smaller; in �c� and �d� the opposite
occurs. The dephasing effects are active in five columns of the
device. Energy regions where the current flow is characterized by
integer values of the conductance and no noise alternate with en-
ergy regions characterized by shot noise and noninteger values of
the conductance.

DEPHASING EFFECTS AND SHOT NOISE IN QUANTUM… PHYSICAL REVIEW B 78, 115313 �2008�

115313-9



9 A. Pecchia and A. Di Carlo, Rep. Prog. Phys. 67, 1497 �2004�.
10 Y. A. Berlin, A. L. Burin, and M. A. Ratner, Chem. Phys. 275,

61 �2002�.
11 A. Troisi and M. A. Ratner, Phys. Rev. B 72, 033408 �2005�.
12 M. Galperin, A. Nitzan, and M. A. Ratner, Phys. Rev. B 75,

155312 �2007�.
13 B. K. Nikolić, L. P. Zârbo, and S. Souma, Phys. Rev. B 73,

075303 �2006�.
14 N. Samarth, in Solid State Physics, edited by H. Ehrenreich and

F. Spaepen �Academic, San Diego, 2004�, Vol. 58, p. 1.
15 T. Ando, Phys. Rev. B 49, 4679 �1994�.
16 F. Gagel and K. Maschke, Phys. Rev. B 54, 13885 �1996�.
17 M. Büttiker, Phys. Rev. B 38, 9375 �1988�.
18 G. Metalidis and P. Bruno, Phys. Rev. B 73, 113308 �2006�.
19 A. Cresti, G. Grosso, and G. P. Parravicini, Phys. Rev. B 77,

115408 �2008�.
20 K. v. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45,

494 �1980�.
21 D. Yoshioka, The Quantum Hall Effect �Springer, Berlin, 2002�.
22 D. K. Ferry and S. M. Goodnick, Transport in Nanostructures

�Cambridge University Press, Cambridge, England, 1997�.
23 R. Lake, G. Klimeck, R. C. Browen, and D. Jovanovic, J. Appl.

Phys. 81, 7845 �1997�.
24 S. Datta, Quantum Transport: Atom to Transistor �Cambridge

University Press, Cambridge, England, 2005�.
25 M. Galperin, M. A. Ratner, and A. Nitzan, J. Phys.: Condens.

Matter 19, 103201 �2007�.
26 A. Wacker and Ben Yu-Kuang Hu, Phys. Rev. B 60, 16039

�1999�.
27 Z. Bihary and M. A. Ratner, Phys. Rev. B 72, 115439 �2005�.
28 R. Golizadeh-Mojarad and S. Datta, Phys. Rev. B 75, 081301�R�

�2007�.
29 A. Cresti, G. Grosso, and G. Pastori Parravicini, J. Phys.: Con-

dens. Matter 18, 10059 �2006�.
30 D. W. Bullet, R. Haydock, V. Heine, and M. J. Kelly, in Solid

State Physics, edited by H. Ehrenreich, F. Seitz, and D. Turnbull
�Academic, New York, 1980�, Vol. 35, p. 1.

31 G. Grosso and G. Pastori Parravicini, Solid State Physics �Aca-
demic, London, 2000�.

32 G. Metalidis and P. Bruno, Phys. Rev. B 72, 235304 �2005�.
33 F. Triozon and S. Roche, Eur. Phys. J. B 46, 427 �2005�.
34 A. Cresti, G. Grosso, and G. Pastori Parravicini, Eur. Phys. J. B

53, 537 �2006�.
35 J. X. Zhu and A. V. Balatsky, Phys. Rev. B 67, 165326 �2003�.

ALESSANDRO CRESTI AND GIUSEPPE PASTORI PARRAVICINI PHYSICAL REVIEW B 78, 115313 �2008�

115313-10


